Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.918
Filter
1.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12465, 2023.
Article in English | Scopus | ID: covidwho-20245449

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic had a major impact on global health and was associated with millions of deaths worldwide. During the pandemic, imaging characteristics of chest X-ray (CXR) and chest computed tomography (CT) played an important role in the screening, diagnosis and monitoring the disease progression. Various studies suggested that quantitative image analysis methods including artificial intelligence and radiomics can greatly boost the value of imaging in the management of COVID-19. However, few studies have explored the use of longitudinal multi-modal medical images with varying visit intervals for outcome prediction in COVID-19 patients. This study aims to explore the potential of longitudinal multimodal radiomics in predicting the outcome of COVID-19 patients by integrating both CXR and CT images with variable visit intervals through deep learning. 2274 patients who underwent CXR and/or CT scans during disease progression were selected for this study. Of these, 946 patients were treated at the University of Pennsylvania Health System (UPHS) and the remaining 1328 patients were acquired at Stony Brook University (SBU) and curated by the Medical Imaging and Data Resource Center (MIDRC). 532 radiomic features were extracted with the Cancer Imaging Phenomics Toolkit (CaPTk) from the lung regions in CXR and CT images at all visits. We employed two commonly used deep learning algorithms to analyze the longitudinal multimodal features, and evaluated the prediction results based on the area under the receiver operating characteristic curve (AUC). Our models achieved testing AUC scores of 0.816 and 0.836, respectively, for the prediction of mortality. © 2023 SPIE.

2.
Wuli Xuebao/Acta Physica Sinica ; 72(9), 2023.
Article in Chinese | Scopus | ID: covidwho-20245263

ABSTRACT

Owing to the continuous variant of the COVID-19 virus, the present epidemic may persist for a long time, and each breakout displays strongly region/time-dependent characteristics. Predicting each specific burst is the basic task for the corresponding strategies. However, the refinement of prevention and control measures usually means the limitation of the existing records of the evolution of the spread, which leads to a special difficulty in making predictions. Taking into account the interdependence of people' s travel behaviors and the epidemic spreading, we propose a modified logistic model to mimic the COVID-19 epidemic spreading, in order to predict the evolutionary behaviors for a specific bursting in a megacity with limited epidemic related records. It continuously reproduced the COVID-19 infected records in Shanghai, China in the period from March 1 to June 28, 2022. From December 7, 2022 when Mainland China adopted new detailed prevention and control measures, the COVID-19 epidemic broke out nationwide, and the infected people themselves took "ibuprofen” widely to relieve the symptoms of fever. A reasonable assumption is that the total number of searches for the word "ibuprofen” is a good representation of the number of infected people. By using the number of searching for the word "ibuprofen” provided on Baidu, a famous searching platform in Mainland China, we estimate the parameters in the modified logistic model and predict subsequently the epidemic spreading behavior in Shanghai, China starting from December 1, 2022. This situation lasted for 72 days. The number of the infected people increased exponentially in the period from the beginning to the 24th day, reached a summit on the 31st day, and decreased exponentially in the period from the 38th day to the end. Within the two weeks centered at the summit, the increasing and decreasing speeds are both significantly small, but the increased number of infected people each day was significantly large. The characteristic for this prediction matches very well with that for the number of metro passengers in Shanghai. It is suggested that the relevant departments should establish a monitoring system composed of some communities, hospitals, etc. according to the sampling principle in statistics to provide reliable prediction records for researchers. © 2023 Chinese Physical Society.

3.
Kongzhi yu Juece/Control and Decision ; 38(3):699-705, 2023.
Article in Chinese | Scopus | ID: covidwho-20245134

ABSTRACT

To study the spreading trend and risk of COVID-19, according to the characteristics of COVID-19, this paper proposes a new transmission dynamic model named SLIR(susceptible-low-risk-infected-recovered), based on the classic SIR model by considering government control and personal protection measures. The equilibria, stability and bifurcation of the model are analyzed to reveal the propagation mechanism of COVID-19. In order to improve the prediction accuracy of the model, the least square method is employed to estimate the model parameters based on the real data of COVID-19 in the United States. Finally, the model is used to predict and analyze COVID-19 in the United States. The simulation results show that compared with the traditional SIR model, this model can better predict the spreading trend of COVID-19 in the United States, and the actual official data has further verified its effectiveness. The proposed model can effectively simulate the spreading of COVID-19 and help governments choose appropriate prevention and control measures. Copyright ©2023 Control and Decision.

4.
Intelligent Automation and Soft Computing ; 37(1):179-198, 2023.
Article in English | Web of Science | ID: covidwho-20244836

ABSTRACT

As COVID-19 poses a major threat to people's health and economy, there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently. In non-stationary time series forecasting jobs, there is frequently a hysteresis in the anticipated values relative to the real values. The multilayer deep-time convolutional network and a feature fusion network are combined in this paper's proposal of an enhanced Multilayer Deep Time Convolutional Neural Network (MDTCNet) for COVID-19 prediction to address this problem. In particular, it is possible to record the deep features and temporal dependencies in uncertain time series, and the features may then be combined using a feature fusion network and a multilayer perceptron. Last but not least, the experimental verification is conducted on the prediction task of COVID-19 real daily confirmed cases in the world and the United States with uncertainty, realizing the short-term and long-term prediction of COVID-19 daily confirmed cases, and verifying the effectiveness and accuracy of the suggested prediction method, as well as reducing the hysteresis of the prediction results.

5.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12467, 2023.
Article in English | Scopus | ID: covidwho-20244646

ABSTRACT

It is important to evaluate medical imaging artificial intelligence (AI) models for possible implicit discrimination (ability to distinguish between subgroups not related to the specific clinical task of the AI model) and disparate impact (difference in outcome rate between subgroups). We studied potential implicit discrimination and disparate impact of a published deep learning/AI model for the prediction of ICU admission for COVID-19 within 24 hours of imaging. The IRB-approved, HIPAA-compliant dataset contained 8,357 chest radiography exams from February 2020-January 2022 (12% ICU admission within 24 hours) and was separated by patient into training, validation, and test sets (64%, 16%, 20% split). The AI output was evaluated in two demographic categories: sex assigned at birth (subgroups male and female) and self-reported race (subgroups Black/African-American and White). We failed to show statistical evidence that the model could implicitly discriminate between members of subgroups categorized by race based on prediction scores (area under the receiver operating characteristic curve, AUC: median [95% confidence interval, CI]: 0.53 [0.48, 0.57]) but there was some marginal evidence of implicit discrimination between members of subgroups categorized by sex (AUC: 0.54 [0.51, 0.57]). No statistical evidence for disparate impact (DI) was observed between the race subgroups (i.e. the 95% CI of the ratio of the favorable outcome rate between two subgroups included one) for the example operating point of the maximized Youden index but some evidence of disparate impact to the male subgroup based on sex was observed. These results help develop evaluation of implicit discrimination and disparate impact of AI models in the context of decision thresholds © COPYRIGHT SPIE. Downloading of the is permitted for personal use only.

6.
Proceedings of SPIE - The International Society for Optical Engineering ; 12597, 2023.
Article in English | Scopus | ID: covidwho-20244438

ABSTRACT

In supply chain management (SCM), product classification and demand forecasting are crucial pillars to ensure companies to have production in the right category and quantity for long-term profitability. Due to COVID-19 from 2019, the automobile industry has been seriously negatively affected as the demand dropped dramatically. Therefore, it is necessary to make reasonable product classification and accurate demand forecasting to facilitate automobile companies in SCM to reduce unpopular product manufacture and unnecessary storage costs. In this paper, the Canada automobile market has been chosen with the period from 1946 to 2022. To classify a number of different types of motor vehicles into several categories with general characteristics, K-means Clustering method is applied. With the seasonal patterns and random generated features for auto sales, the time series models ARIMA and SARIMA are adopted for demand forecasting. According to the analysis, the automobiles fitting in the category with high demand and low price are valuable for further production. In addition, SARIMA Model is more accurate and fits better than ARIMA Model for both the training and test datasets for long-term prediction. The classification and forecasting results shed light on guiding manufacturers to adjust production schemes and ensuring auto dealers to predict more accurate sales in order to optimize the strategic planning. © 2023 SPIE.

7.
Decision Making: Applications in Management and Engineering ; 6(1):502-534, 2023.
Article in English | Scopus | ID: covidwho-20244096

ABSTRACT

The COVID-19 pandemic has caused the death of many people around the world and has also caused economic problems for all countries in the world. In the literature, there are many studies to analyze and predict the spread of COVID-19 in cities and countries. However, there is no study to predict and analyze the cross-country spread in the world. In this study, a deep learning based hybrid model was developed to predict and analysis of COVID-19 cross-country spread and a case study was carried out for Emerging Seven (E7) and Group of Seven (G7) countries. It is aimed to reduce the workload of healthcare professionals and to make health plans by predicting the daily number of COVID-19 cases and deaths. Developed model was tested extensively using Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and R Squared (R2). The experimental results showed that the developed model was more successful to predict and analysis of COVID-19 cross-country spread in E7 and G7 countries than Linear Regression (LR), Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). The developed model has R2 value close to 0.9 in predicting the number of daily cases and deaths in the majority of E7 and G7 countries. © 2023 by the authors.

8.
Journal of Forecasting ; 42(4):989-1007, 2023.
Article in English | ProQuest Central | ID: covidwho-20243961

ABSTRACT

Several procedures to forecast daily risk measures in cryptocurrency markets have been recently implemented in the literature. Among them, long‐memory processes, procedures taking into account the presence of extreme observations, procedures that include more than a single regime, and quantile regression‐based models have performed substantially better than standard methods in terms of forecasting risk measures. Those procedures are revisited in this paper, and their value at risk and expected shortfall forecasting performance are evaluated using recent Bitcoin and Ethereum data that include periods of turbulence due to the COVID‐19 pandemic, the third halving of Bitcoin, and the Lexia class action. Additionally, in order to mitigate the influence of model misspecification and enhance the forecasting performance obtained by individual models, we evaluate the use of several forecast combining strategies. Our results, based on a comprehensive backtesting exercise, reveal that, for Bitcoin, there is no single procedure outperforming all other models, but for Ethereum, there is evidence showing that the GAS model is a suitable alternative for forecasting both risk measures. We found that the combining methods were not able to outperform the better of the individual models.

9.
International IEEE/EMBS Conference on Neural Engineering, NER ; 2023-April, 2023.
Article in English | Scopus | ID: covidwho-20243641

ABSTRACT

This study proposes a graph convolutional neural networks (GCN) architecture for fusion of radiological imaging and non-imaging tabular electronic health records (EHR) for the purpose of clinical event prediction. We focused on a cohort of hospitalized patients with positive RT-PCR test for COVID-19 and developed GCN based models to predict three dependent clinical events (discharge from hospital, admission into ICU, and mortality) using demographics, billing codes for procedures and diagnoses and chest X-rays. We hypothesized that the two-fold learning opportunity provided by the GCN is ideal for fusion of imaging information and tabular data as node and edge features, respectively. Our experiments indicate the validity of our hypothesis where GCN based predictive models outperform single modality and traditional fusion models. We compared the proposed models against two variations of imaging-based models, including DenseNet-121 architecture with learnable classification layers and Random Forest classifiers using disease severity score estimated by pre-trained convolutional neural network. GCN based model outperforms both imaging-only methods. We also validated our models on an external dataset where GCN showed valuable generalization capabilities. We noticed that edge-formation function can be adapted even after training the GCN model without limiting application scope of the model. Our models take advantage of this fact for generalization to external data. © 2023 IEEE.

10.
Energies ; 16(10), 2023.
Article in English | Web of Science | ID: covidwho-20243050

ABSTRACT

The transition to Electric Vehicles (EV) in place of traditional internal combustion engines is increasing societal demand for electricity. The ability to integrate the additional demand from EV charging into forecasting electricity demand is critical for maintaining the reliability of electricity generation and distribution. Load forecasting studies typically exclude households with home EV charging, focusing on offices, schools, and public charging stations. Moreover, they provide point forecasts which do not offer information about prediction uncertainty. Consequently, this paper proposes the Long Short-Term Memory Bayesian Neural Networks (LSTM-BNNs) for household load forecasting in presence of EV charging. The approach takes advantage of the LSTM model to capture the time dependencies and uses the dropout layer with Bayesian inference to generate prediction intervals. Results show that the proposed LSTM-BNNs achieve accuracy similar to point forecasts with the advantage of prediction intervals. Moreover, the impact of lockdowns related to the COVID-19 pandemic on the load forecasting model is examined, and the analysis shows that there is no major change in the model performance as, for the considered households, the randomness of the EV charging outweighs the change due to pandemic.

11.
2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development, OTCON 2022 ; 2023.
Article in English | Scopus | ID: covidwho-20243021

ABSTRACT

Machine learning models have shown great performance in prediction and detection of many diseases such as cancer, heart attack, liver infection, and kidney infection. COVID-19 emerged as one of the deadly disease. Its cases grownin unpredictable manner. Regression is the mathematical technique in machine learning that can used to find relation between outcome variable with independent variable. In the present manuscript, regression has been used to predict COVID-19 growth. It has been found that the model is highly accurate in the COVID case prediction. © 2023 IEEE.

12.
CEUR Workshop Proceedings ; 3382, 2022.
Article in English | Scopus | ID: covidwho-20242435

ABSTRACT

In this paper, we study the epidemic situation in Kazakhstan and neighboring countries, taking into account territorial features in emergency situations. As you know, the excessive concentration of the population in large cities and the transition to a world without borders created ideal conditions for a global pandemic. The article also provides the results of a detailed analysis of the solution approaches to modeling the development of epidemics by types of models (basic SIR model, modified SEIR models) and the practical application of the SIR model using an example (Kazakhstan, Russia, Kyrgyzstan, Uzbekistan and other neighboring countries). The obtained processing results are based on statistical data from open sources on the development of the COVID-19 epidemic. The result obtained is a general solution of the SIR-model of the spread of the epidemic according to the fourth-order Runge-Kutta method. The parameters β, γ, which are indicators of infection, recovery, respectively, were calculated using data at the initial phase of the Covid 2019 epidemic. An analysis of anti-epidemic measures in neighboring countries is given. © 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

13.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) ; 13989 LNCS:703-717, 2023.
Article in English | Scopus | ID: covidwho-20242099

ABSTRACT

Machine learning models can use information from gene expressions in patients to efficiently predict the severity of symptoms for several diseases. Medical experts, however, still need to understand the reasoning behind the predictions before trusting them. In their day-to-day practice, physicians prefer using gene expression profiles, consisting of a discretized subset of all data from gene expressions: in these profiles, genes are typically reported as either over-expressed or under-expressed, using discretization thresholds computed on data from a healthy control group. A discretized profile allows medical experts to quickly categorize patients at a glance. Building on previous works related to the automatic discretization of patient profiles, we present a novel approach that frames the problem as a multi-objective optimization task: on the one hand, after discretization, the medical expert would prefer to have as few different profiles as possible, to be able to classify patients in an intuitive way;on the other hand, the loss of information has to be minimized. Loss of information can be estimated using the performance of a classifier trained on the discretized gene expression levels. We apply one common state-of-the-art evolutionary multi-objective algorithm, NSGA-II, to the discretization of a dataset of COVID-19 patients that developed either mild or severe symptoms. The results show not only that the solutions found by the approach dominate traditional discretization based on statistical analysis and are more generally valid than those obtained through single-objective optimization, but that the candidate Pareto-optimal solutions preserve the sense-making that practitioners find necessary to trust the results. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

14.
Proceedings of 2023 3rd International Conference on Innovative Practices in Technology and Management, ICIPTM 2023 ; 2023.
Article in English | Scopus | ID: covidwho-20241755

ABSTRACT

The epidemic caused by COVID-19 presents a significant risk to the continuation of human civilisation and has already done irreparable damage to society. In this paper, forecasting of Coronavirus outbreak in India is performed by LSTM and CovnLSTM deep neural network techniques. COVID-19 data of confirmed cases of India is used. It was taken from John Hopkins University. The loss rate of ConvLSTM is lower than LSTM and RMSE of ConvLSTM is lower than LSTM. For training Covn-LSTM shows 0.069% and testing ConvLSTM shows 0.32% improvement over LSTM model. Therefore, ConvLSTM outperformed over LSTM model. Further wise selection of hyper-parameters could increase the accuracy of the models. © 2023 IEEE.

15.
Decision Making: Applications in Management and Engineering ; 6(1):365-378, 2023.
Article in English | Scopus | ID: covidwho-20241694

ABSTRACT

COVID-19 is a raging pandemic that has created havoc with its impact ranging from loss of millions of human lives to social and economic disruptions of the entire world. Therefore, error-free prediction, quick diagnosis, disease identification, isolation and treatment of a COVID patient have become extremely important. Nowadays, mining knowledge and providing scientific decision making for diagnosis of diseases from clinical datasets has found wide-ranging applications in healthcare sector. In this direction, among different data mining tools, association rule mining has already emerged out as a popular technique to extract invaluable information and develop important knowledge-base to help in intelligent diagnosis of distinct diseases quickly and automatically. In this paper, based on 5434 records of COVID cases collected from a popular data science community and using Rapid Miner Studio software, an attempt is put forward to develop a predictive model based on frequent pattern growth algorithm of association rule mining to determine the likelihood of COVID-19 in a patient. It identifies breathing problem, fever, dry cough, sore throat, abroad travel and attended large gathering as the main indicators of COVID-19. Employing the same clinical dataset, a linear regression model is also proposed having a moderately high coefficient of determination of 0.739 in accurately predicting the occurrence of COVID-19. A decision support system can also be developed using the association rules to ease out and automate early detection of other diseases. © 2023 by the authors.

16.
Academic Journal of Naval Medical University ; 43(9):1059-1065, 2022.
Article in Chinese | EMBASE | ID: covidwho-20241583

ABSTRACT

As important combat platforms, large warships have the characteristics of compact internal space and dense personnel. Once infectious diseases occur, they are very easy to spread. Therefore, it is very important to select suitable forecasting models for infectious diseases in this environment. This paper introduces 4 classic dynamics models of infectious diseases, summarizes various kinds of compartmental models and their key characteristics, and discusses several common practical simulation requirements, helping relevant health personnel to cope with the challenges in health and epidemic prevention such as the prevention and control of coronavirus disease 2019.Copyright © 2022, Second Military Medical University Press. All rights reserved.

17.
11th Simulation Workshop, SW 2023 ; : 184-193, 2023.
Article in English | Scopus | ID: covidwho-20241269

ABSTRACT

This paper describes a hybrid (virtual and online) workshop held as part of the EU STAMINA project that aimed to engage project partners to explore ethics and simulation modelling in the context of pandemic preparedness and response. The purpose of the workshop was to consider how the model's design and use in specific pandemic decision-making contexts could have broader implications for issues like transparency, explainability, representativeness, bias, trust, equality, and social injustices. Its outputs will be used as evidence to produce a series of measures that could help mitigate ethical harms and support the greater possible benefit from the use of the models. These include recommendations for policy, data-gathering, training, potential protocols to support end-user engagement, as well as guidelines for designing and using simulation models for pandemic decision-making. This paper presents the methodological approaches taken when designing the workshop, practical concerns raised, initial insights gained, and considers future steps. © SW 2023.All rights reserved

18.
3rd Information Technology to Enhance e-Learning and Other Application, IT-ELA 2022 ; : 176-180, 2022.
Article in English | Scopus | ID: covidwho-20240312

ABSTRACT

This COVID-19 study uses a new way of looking at data to shed light on important topics and societal problems. After digesting specific interpretations, experts' points of view are looked at: We'll study and categorize these subfields based on their importance and influence in the academic world. Web-based education, cutting-edge technologies, AI, dashboards, social networking, network security, industry titans (including blockchain), safety, and inventions will be discussed. By combining chest X-ray images with machine learning, the article views provide element breadth, ideal understanding, critical issue detection, and hypothesis and practice concepts. We've used machine learning techniques in COVID-19 to help manage the pandemic flow and stop infections. Statistics show that the hybrid strategy is better than traditional ones. © 2022 IEEE.

19.
Advances in Transportation Studies ; 60:141-158, 2023.
Article in English | Academic Search Complete | ID: covidwho-20240044

ABSTRACT

This paper contains an investigation of the COVID-19 impacts on freight flows and the handling of uncertainty in freight forecasting models, based on data from Greece. It collects and analyses, over a 7-year period before and during the pandemic, data for freight transport operations and some related factors in order to macroscopically examine any statistically significant changes in their values over time. This period wasjudged necessary in order to establish the pattern of fluctuations in the relevant data during the non-pandemic years and thus make the visual comparison with the previous period and the years during the pandemic, more clear. First, the paper tests the impact of the pandemic as expressed by the number of daily COVID-19 cases on freight flow variables in order to find the dynamic behavior of these variables and trace their reactions over time. This analysis is made by using the Vector Autoregressive Model (VAR). By implementing VAR modelling, we analyzed the dynamic relationship between freight transport volumes and other factors such as GDP, the industrial production index, exporting transactions and the number of coronavirus cases. The main result of the model analysis and the employment of impulse response functions revealed that the unexpected shock of COVID has a negative reaction to the economy and the freight transport volumes and a rather shortterm limited duration disruption effect on the growth of exports as well as on the industrial production index, of approximately eight months. Secondly, the paper discusses how, unpredicted events like the pandemic, influence the uncertainty inherent in freight transport modelling and formulates a novel freight modelling framework procedure based on scenario building, regular monitoring and data updates on a permanent basis. [ FROM AUTHOR] Copyright of Advances in Transportation Studies is the property of Advances in Transportation Studies and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

20.
Journal of Travel Research ; 62(5):969-988, 2023.
Article in English | ProQuest Central | ID: covidwho-20239306

ABSTRACT

When people make travel decisions, they consult their imagination, considering how they would feel in the respective travel situation. Both, researchers who examine this phenomenon and practitioners executing it, commonly hold the vague assumption of an evaluative cognitive process that enables tourists to factor such information into their decision-making process. The nature and functioning of such a process is largely unknown. The authors suggest that travelers, often subconsciously, mentally simulate future hotel stays and predict future feelings to inform their decision-making, a process referred to as affective forecasting. Executing an experimental design, the authors show that actively engaging in episodic future thinking to trigger affective forecasting increases travelers' intentions toward holiday accommodations. This effect is mediated by hotel trust and risk perception, demonstrating that affective forecasting is an effective way for regaining tourists' trust and reducing their perceived risk during a pandemic. Contributions to theory and practical implications are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL